Levenberg-Marquardt Method for Mathematical Programs with Linearly Complementarity Constraints
نویسندگان
چکیده
In this paper, a new method for solving a mathematical programming problem with linearly complementarity constraints (MPLCC) is introduced, which applies the Levenberg-Marquardt (L-M) method to solve the B-stationary condition of original problem. Under the MPEC-LICQ, the proposed method is proved convergent to B-stationary point of MPLCC.
منابع مشابه
Solving Mathematical Programs with Equilibrium Constraints
This paper aims at developing effective numerical methods for solving mathematical programs with equilibrium constraints. Due to the existence of complementarity constraints, the usual constraint qualifications do not hold at any feasible point, and there are various stationarity concepts such as Clarke, Mordukhovich, and strong stationarities that are specially defined for mathematical program...
متن کاملLevenberg-Marquardt Method for the Eigenvalue Complementarity Problem
The eigenvalue complementarity problem (EiCP) is a kind of very useful model, which is widely used in the study of many problems in mechanics, engineering, and economics. The EiCP was shown to be equivalent to a special nonlinear complementarity problem or a mathematical programming problem with complementarity constraints. The existing methods for solving the EiCP are all nonsmooth methods, in...
متن کاملA Modified Levenberg-Marquardt Method for Nonsmooth Equations with Finitely Many Maximum Functions
For solving nonsmooth systems of equations, the Levenberg-Marquardt method and its variants are of particular importance because of their locally fast convergent rates. Finitely manymaximum functions systems are very useful in the study of nonlinear complementarity problems, variational inequality problems, Karush-Kuhn-Tucker systems of nonlinear programming problems, and many problems in mecha...
متن کاملNonsmooth Levenberg-Marquardt Type Method for Solving a Class of Stochastic Linear Complementarity Problems with Finitely Many Elements
Abstract: Our purpose of this paper is to solve a class of stochastic linear complementarity problems (SLCP) with finitely many elements. Based on a new stochastic linear complementarity problem function, a new semi-smooth least squares reformulation of the stochastic linear complementarity problem is introduced. For solving the semi-smooth least squares reformulation, we propose a feasible non...
متن کاملThe Levenberg-Marquardt-Type Methods for a Kind of Vertical Complementarity Problem
Two kinds of the Levenberg-Marquardt-type methods for the solution of vertical complementarity problem are introduced. The methods are based on a nonsmooth equation reformulation of the vertical complementarity problem for its solution. Local and global convergence results and some remarks about the two kinds of the Levenberg-Marquardt-type methods are also given. Finally, numerical experiments...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015